后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。安全審計(jì)發(fā)現(xiàn)日志模塊存在敏感信息明文存儲(chǔ)缺陷。浙江第三方軟件評(píng)測(cè)實(shí)驗(yàn)室
**小化對(duì)數(shù)損失基本等價(jià)于**大化分類器的準(zhǔn)確度,對(duì)于完美的分類器,對(duì)數(shù)損失值為0。對(duì)數(shù)損失函數(shù)的計(jì)算公式如下:其中,y為輸出變量即輸出的測(cè)試樣本的檢測(cè)結(jié)果,x為輸入變量即測(cè)試樣本,l為損失函數(shù),n為測(cè)試樣本(待檢測(cè)軟件的二進(jìn)制可執(zhí)行文件)數(shù)目,yij是一個(gè)二值指標(biāo),表示與輸入的第i個(gè)測(cè)試樣本對(duì)應(yīng)的類別j,類別j指良性軟件或惡意軟件,pij為輸入的第i個(gè)測(cè)試樣本屬于類別j的概率,m為總類別數(shù),本實(shí)施例中m=2。分類器的性能也可用roc曲線(receiveroperatingcharacteristic)評(píng)價(jià),roc曲線的縱軸是檢測(cè)率(true****itiverate),橫軸是誤報(bào)率(false****itiverate),該曲線反映的是隨著檢測(cè)閾值變化下檢測(cè)率與誤報(bào)率之間的關(guān)系曲線。roc曲線下面積(areaunderroccurve,auc)的值是評(píng)價(jià)分類器比較綜合的指標(biāo),auc的值通常介于,較大的auc值一般表示分類器的性能較優(yōu)。(3)特征提取提取dll和api信息特征視圖dll(dynamiclinklibrary)文件為動(dòng)態(tài)鏈接庫(kù)文件,執(zhí)行某一個(gè)程序時(shí),相應(yīng)的dll文件就會(huì)被調(diào)用。一個(gè)應(yīng)用程序可使用多個(gè)dll文件,一個(gè)dll文件也可能被不同的應(yīng)用程序使用。api(applicationprogramminginterface)函數(shù)是windows提供給用戶作為應(yīng)用程序開發(fā)的接口。合肥軟件檢測(cè)報(bào)告價(jià)格艾策檢測(cè)以智能算法驅(qū)動(dòng)分析,為工業(yè)產(chǎn)品提供全生命周期質(zhì)量管控解決方案!
在介紹諸多知識(shí)點(diǎn)的過(guò)程當(dāng)中結(jié)合直觀形象的圖表或?qū)嶋H案例進(jìn)行深入淺出的分析,從而使讀者可以更好地理解秋掌握軟件測(cè)試?yán)碚撝R(shí),并迅速地運(yùn)用到實(shí)際測(cè)試工作中去。本書適合作為各層次高等院校計(jì)算機(jī)及相關(guān)的教學(xué)用書,也可作為軟件測(cè)試人員的參考書。目錄前言第1章概述第2章軟件測(cè)試基礎(chǔ)第3章單元測(cè)試第4章集成測(cè)試第5章系統(tǒng)測(cè)試……軟件測(cè)試技術(shù)圖書2書名:軟件測(cè)試技術(shù)層次:高職高專配套:電子課件作者:徐芳出版社:機(jī)械工業(yè)出版社出版時(shí)間:2011-6-21ISBN:開本:16開定價(jià):¥內(nèi)容簡(jiǎn)介本書根據(jù)軟件測(cè)試教學(xué)的需要,結(jié)合讀者對(duì)象未來(lái)的職業(yè)要求和定位,除了盡力***闡述軟件測(cè)試技術(shù)基本概念外,采取了計(jì)劃、設(shè)計(jì)與開發(fā)、執(zhí)行這樣的工程步驟來(lái)描述軟件測(cè)試的相關(guān)知識(shí),使學(xué)生在學(xué)習(xí)軟件測(cè)試的技術(shù)知識(shí)時(shí),能夠同時(shí)獲得工程化思維方式的訓(xùn)練。本書共7章。第1章介紹軟件測(cè)試的基本知識(shí);第2章介紹如何制定軟件測(cè)試計(jì)劃;第3章介紹測(cè)試用例的設(shè)計(jì)和相關(guān)技術(shù);第4章介紹執(zhí)行測(cè)試中相關(guān)技術(shù)和方法;第5章介紹實(shí)際工作中各種測(cè)試方法;第6章介紹MI公司的一套測(cè)試工具的使用,包括功能、性能和測(cè)試管理工具;第7章通過(guò)一個(gè)實(shí)例,給出了完整的與軟件測(cè)試相關(guān)的文檔。
并將測(cè)試樣本的dll和api信息特征視圖、格式信息特征視圖以及字節(jié)碼n-grams特征視圖輸入步驟s2訓(xùn)練得到的多模態(tài)深度集成模型中,對(duì)測(cè)試樣本進(jìn)行檢測(cè)并得出檢測(cè)結(jié)果。實(shí)驗(yàn)結(jié)果與分析(1)樣本數(shù)據(jù)集選取實(shí)驗(yàn)評(píng)估使用了不同時(shí)期的惡意軟件和良性軟件樣本,包含了7871個(gè)良性軟件樣本和8269個(gè)惡意軟件樣本,其中4103個(gè)惡意軟件樣本是2011年以前發(fā)現(xiàn)的,4166個(gè)惡意軟件樣本是近年來(lái)新發(fā)現(xiàn)的;3918個(gè)良性軟件樣本是從全新安裝的windowsxpsp3系統(tǒng)中收集的,3953個(gè)良性軟件樣本是從全新安裝的32位windows7系統(tǒng)中收集的。所有的惡意軟件樣本都是從vxheavens網(wǎng)站中收集的,所有的樣本格式都是windowspe格式的,樣本數(shù)據(jù)集構(gòu)成如表1所示。表1樣本數(shù)據(jù)集類別惡意軟件樣本良性軟件樣本早期樣本41033918近期樣本41663953合計(jì)82697871(2)評(píng)價(jià)指標(biāo)及方法分類性能主要用兩個(gè)指標(biāo)來(lái)評(píng)估:準(zhǔn)確率和對(duì)數(shù)損失。準(zhǔn)確率測(cè)量所有預(yù)測(cè)中正確預(yù)測(cè)的樣本占總樣本的比例,*憑準(zhǔn)確率通常不足以評(píng)估預(yù)測(cè)的魯棒性,因此還需要使用對(duì)數(shù)損失。對(duì)數(shù)損失(logarithmicloss),也稱交叉熵?fù)p失(cross-entropyloss),是在概率估計(jì)上定義的,用于測(cè)量預(yù)測(cè)類別與真實(shí)類別之間的差距大小。數(shù)據(jù)安全與合規(guī):艾策科技的最佳實(shí)踐。
收藏查看我的收藏0有用+1已投票0軟件測(cè)試方法編輯鎖定本詞條由“科普**”科學(xué)百科詞條編寫與應(yīng)用工作項(xiàng)目審核。軟件測(cè)試是使用人工或自動(dòng)的手段來(lái)運(yùn)行或測(cè)定某個(gè)軟件系統(tǒng)的過(guò)程,其目的在于檢驗(yàn)它是否滿足規(guī)定的需求或弄清預(yù)期結(jié)果與實(shí)際結(jié)果之間的差別。[1]從是否關(guān)心軟件內(nèi)部結(jié)構(gòu)和具體實(shí)現(xiàn)的角度劃分,測(cè)試方法主要有白盒測(cè)試和黑盒測(cè)試。白盒測(cè)試方法主要有代碼檢査法、靜態(tài)結(jié)構(gòu)分析法、靜態(tài)質(zhì)量度量法、邏輯覆蓋法、基夲路徑測(cè)試法、域測(cè)試、符號(hào)測(cè)試、路徑覆蓋和程序變異。黑盒測(cè)試方法主要包括等價(jià)類劃分法、邊界值分析法、錯(cuò)誤推測(cè)法、因果圖法、判定表驅(qū)動(dòng)法、正交試驗(yàn)設(shè)計(jì)法、功能圖法、場(chǎng)景法等。[1]從是否執(zhí)行程序的角度劃分,測(cè)試方法又可分為靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試。靜態(tài)測(cè)試包括代碼檢査、靜態(tài)結(jié)構(gòu)分析、代碼質(zhì)量度量等。動(dòng)態(tài)測(cè)試由3部分組成:構(gòu)造測(cè)試實(shí)例、執(zhí)行程序和分析程序的輸出結(jié)果。創(chuàng)新光譜分析技術(shù)賦能艾策檢測(cè),實(shí)現(xiàn)食品藥品中微量有害物質(zhì)的超痕量檢測(cè)。安全軟件測(cè)評(píng)
安全掃描確認(rèn)軟件通過(guò)ISO 27001標(biāo)準(zhǔn),無(wú)高危漏洞記錄。浙江第三方軟件評(píng)測(cè)實(shí)驗(yàn)室
測(cè)試人員素質(zhì)要求1、責(zé)任心2、學(xué)習(xí)能力3、懷疑精神4、溝通能力5、專注力6、洞察力7、團(tuán)隊(duì)精神8、注重積累軟件測(cè)試技術(shù)測(cè)試目的編輯軟件測(cè)試的目的是為了保證軟件產(chǎn)品的**終質(zhì)量,在軟件開發(fā)的過(guò)程中,對(duì)軟件產(chǎn)品進(jìn)行質(zhì)量控制。一般來(lái)說(shuō)軟件測(cè)試應(yīng)由**的產(chǎn)品評(píng)測(cè)中心負(fù)責(zé),嚴(yán)格按照軟件測(cè)試流程,制定測(cè)試計(jì)劃、測(cè)試方案、測(cè)試規(guī)范,實(shí)施測(cè)試,對(duì)測(cè)試記錄進(jìn)行分析,并根據(jù)回歸測(cè)試情況撰寫測(cè)試報(bào)告。測(cè)試是為了證明程序有錯(cuò),而不能保證程序沒(méi)有錯(cuò)誤。軟件測(cè)試技術(shù)常見測(cè)試編輯回歸測(cè)試功能測(cè)試壓力測(cè)試負(fù)載測(cè)試性能測(cè)試易用性測(cè)試安裝與反安裝測(cè)試**測(cè)試安全性測(cè)試兼容性測(cè)試內(nèi)存泄漏測(cè)試比較測(cè)試Alpha測(cè)試Beta測(cè)試測(cè)試信息流1、軟件配置2、測(cè)試配置3、測(cè)試工具軟件測(cè)試技術(shù)-軟件測(cè)試的分類1、從是否需要執(zhí)行被測(cè)試軟件的角度分類(靜態(tài)測(cè)試和動(dòng)態(tài)測(cè)試)。2、從測(cè)試是否針對(duì)軟件結(jié)構(gòu)與算法的角度分類(白盒測(cè)試和黑盒測(cè)試)。3、從測(cè)試的不同階段分類(單元測(cè)試、集成測(cè)試、系統(tǒng)測(cè)試、驗(yàn)收測(cè)試)。浙江第三方軟件評(píng)測(cè)實(shí)驗(yàn)室