太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像、反恐安全檢查、通信雷達(dá)、射電天文等領(lǐng)域,將對技術(shù)創(chuàng)新、國民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,美國**將THz科技評為“改變未來世界的**技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱**重點戰(zhàn)略目標(biāo)”**,舉全國之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流、光電導(dǎo)天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器、光學(xué)混頻、加速電子、光參量轉(zhuǎn)換等方法產(chǎn)生。修復(fù)石墨烯片層上的缺陷,可以提高石墨烯微片的碳含量和在導(dǎo)電、導(dǎo)熱等方面的性能。進(jìn)口氧化石墨技術(shù)
比較成熟的非線性材料有半導(dǎo)體可飽和吸收鏡和碳納米管可飽和吸收體。但是制作半導(dǎo)體可飽和吸收鏡需要相對復(fù)雜和昂貴的超凈制造系統(tǒng),這類器件的典型恢復(fù)時間約為幾個納秒,且半導(dǎo)體可飽和吸收鏡的光損傷閥值很低,常用的半導(dǎo)體飽和吸收鏡吸收帶寬較窄。碳納米管是一種直接帶隙材料,帶隙大小由碳納米管直徑和屬性決定。不同直徑碳納米管的混合可實現(xiàn)寬的非線性吸收帶,覆蓋常用的1.0~1.6um激光増益發(fā)射波段。但是由于碳納米管的管狀形態(tài)會產(chǎn)生很大的散射損耗,提高了鎖模閥值,限制了激光輸出功率和效率,所以,研究人員一直在尋找一種具有高光損傷閩值、超快恢復(fù)時間、寬帶寬和價格便宜等優(yōu)點的飽和吸收材料。開發(fā)氧化石墨商家氧化石墨烯表面的-OH和-COOH等官能團(tuán)含有孤對電子。
盡管氧化石墨烯自身可以發(fā)射熒光,但有趣的是它也可以淬滅熒光。這兩種看似相互矛盾的性質(zhì)集于一身,正是由于氧化石墨烯化學(xué)成分的多樣性、原子和電子層面的復(fù)雜結(jié)構(gòu)造成的。眾所周知,石墨形態(tài)的碳材料可以淬滅處于其表面的染料分子的熒光,同樣的,在GO和RGO中存在的SP2區(qū)域可以淬滅臨近一些物質(zhì)的的熒光,如染料分子、共軛聚合物、量子點等,而GO的熒光淬滅效率在還原后還有進(jìn)一步的提升。有很多文章定量分析了GO和RGO的熒光淬滅效率,研究表明,熒光淬滅特性來自于GO、RGO與輻射發(fā)生體之間的熒光共振能量轉(zhuǎn)移或者非輻射偶極-偶極耦合。
隨著材料領(lǐng)域的擴(kuò)張,人們對于材料的功能性需求更為嚴(yán)苛,迫切需要在交通運輸、建筑材料、能量存儲與轉(zhuǎn)化等領(lǐng)域應(yīng)用性質(zhì)更加優(yōu)良的材料出現(xiàn),石墨烯以優(yōu)異的聲、光、熱、電、力等性質(zhì)成為各新型材料領(lǐng)域追求的目標(biāo),作為前驅(qū)體的GO以其靈活的物理化學(xué)性質(zhì)、可規(guī)?;苽涞奶攸c更成為應(yīng)用基礎(chǔ)研究的熱電。雖然GO具有諸多特性,但是由于范德華作用以及π-π作用等強相互作用力,使GO之間很容易在不同體系中發(fā)生團(tuán)聚,其在納米尺度上表現(xiàn)的優(yōu)異性能隨著GO片層的聚集***的降低直至消失,極大地阻礙了GO的進(jìn)一步應(yīng)用。GO成為制作傳感器極好的基本材料。
還原氧化石墨烯(RGO)在邊緣處和面內(nèi)缺陷處具有豐富的分子結(jié)合位點,使其成為一種很有希望的電化學(xué)傳感器材料。結(jié)合原位還原技術(shù),有很多研究使用諸如噴涂、旋涂等基于溶液的技術(shù)手段,利用氧化石墨烯(GO)在不同基底上制造出具備石墨烯相關(guān)性質(zhì)的器件,以期在一些場合替代CVD制備的石墨烯。結(jié)構(gòu)決定性質(zhì)。氧化石墨烯(GO)的能級結(jié)構(gòu)由sp3雜化和sp2雜化的相對比例決定[6],調(diào)節(jié)含氧基團(tuán)相對含量可以實現(xiàn)氧化石墨烯(GO)從絕緣體到半導(dǎo)體再到半金屬性質(zhì)的轉(zhuǎn)換GO表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾。開發(fā)氧化石墨商家
GO制備簡單、自身具有受還原程度調(diào)控的帶隙,可以實現(xiàn)超寬譜(從可見至太赫茲波段)探測。進(jìn)口氧化石墨技術(shù)
在光通信領(lǐng)域,徐等人開發(fā)了飛秒氧化石墨烯鎖模摻鉺光纖激光器,與基于石墨烯的可飽和吸收體相比,具有性能有所提升,并且具有易于制造的優(yōu)點[95],這是GO/RGO在與光纖結(jié)合應(yīng)用**早的報道之一。在傳感領(lǐng)域,Sridevi等提出了一種基于腐蝕布拉格光柵光纖(FBG)外加GO涂層的高靈敏、高精度生化傳感器,該方法在檢測刀豆球蛋白A中進(jìn)行了試驗[96]。為了探索光纖技術(shù)和GO特性結(jié)合的優(yōu)點,文獻(xiàn)[97]介紹了不同的GO涂層在光纖樣品上應(yīng)用的特點,還分析了在傾斜布拉格光柵光纖FBG(TFBG)表面增加GO涂層對折射率(RI)變化的影響,論證了這種構(gòu)型對新傳感器的發(fā)展的適用性。圖9.14給出了歸一化的折射率變化數(shù)據(jù),顯示了這種構(gòu)型在多種傳感領(lǐng)域應(yīng)用的可能。進(jìn)口氧化石墨技術(shù)