在推動(dòng)以氧化石墨烯為載體的新藥進(jìn)入臨床試驗(yàn)前,勢(shì)必會(huì)面臨諸多挑戰(zhàn):(1)優(yōu)化氧化石墨烯的制備方法及生產(chǎn)工藝,使其具有可重復(fù)性,并能精確控制氧化石墨烯的尺寸和質(zhì)量;(2)比較好使用劑量的摸索,找到以氧化石墨烯為載體的***療效和毒性之間的平衡點(diǎn);(3)其他表面修飾劑的開(kāi)發(fā),需具有良好生物相容性且修飾后的氧化石墨烯能在短時(shí)間內(nèi)被生物體***;(4)毒理學(xué)方法的進(jìn)一步規(guī)范,系統(tǒng)闡明以氧化石墨烯為載體***的潛在毒性;(5)體內(nèi)外模型的建立,***評(píng)價(jià)氧化石墨烯***的生物相容性,使其能更好地轉(zhuǎn)化到臨床。此外,以氧化石墨烯為載體的***在大規(guī)模工業(yè)化生產(chǎn)和應(yīng)用時(shí),還需考慮到對(duì)人體和環(huán)境的不利影響,是否可能導(dǎo)致潛在的人體暴露和環(huán)境污染問(wèn)題,這些有待于進(jìn)一步研究。氧化石墨烯是有著非凡價(jià)值的新材料,將會(huì)在生物醫(yī)學(xué)領(lǐng)域發(fā)揮舉足輕重的作用。氧化石墨中存在大量親水基團(tuán)(如羧基與羥基),在水溶液中容易分散。官能化氧化石墨導(dǎo)電
氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用失衡,傾向于氧化,導(dǎo)致中性粒細(xì)胞炎性浸潤(rùn),蛋白酶分泌增加,產(chǎn)生大量氧化中間產(chǎn)物,即活性氧。大量的實(shí)驗(yàn)研究已經(jīng)確認(rèn)細(xì)胞經(jīng)不同濃度的GO處理后,都會(huì)增加細(xì)胞中活性氧的量。而活性氧的量可以通過(guò)商業(yè)化的無(wú)色染料染色后利用流式細(xì)胞儀或熒光顯微鏡檢測(cè)到。氧化應(yīng)激是由自由基在體內(nèi)產(chǎn)生的一種負(fù)面作用,并被認(rèn)為是導(dǎo)致衰老和疾病的一個(gè)重要因素。氧化應(yīng)激反應(yīng)不僅與GO的濃度[17,18]有關(guān),還與GO的氧化程度[19]有關(guān)。如將蠕蟲(chóng)分別置于10μg/ml和20μg/ml的PLL-PEG修飾的GO溶液中,GO會(huì)引起蠕蟲(chóng)細(xì)胞內(nèi)活性氧的積累,其活性氧分別增加59.2%和75.3%。官能化氧化石墨導(dǎo)電松散的氧化石墨分散在堿性溶液中形成類似石墨烯結(jié)構(gòu)的單原子厚度的片段。
GO作為新型的二維結(jié)構(gòu)的納米材料,具有疏水性中間片層與親水性邊緣結(jié)構(gòu),特殊的結(jié)構(gòu)決定其優(yōu)異的***特性。GO的***活性主要有以下幾種機(jī)制:(1)機(jī)械破壞,包括物理穿刺或者切割;(2)氧化應(yīng)激引發(fā)的細(xì)菌/膜物質(zhì)破壞;(3)包覆導(dǎo)致的跨膜運(yùn)輸阻滯和(或)細(xì)菌生長(zhǎng)阻遏;(4)磷脂分子抽提理論。GO作用于細(xì)菌膜表面的殺菌機(jī)制中,主要是GO與起始分子反應(yīng)(MolecularInitiatingEvents,MIEs)[51]的作用(圖7.3),包括GO表面活性引發(fā)的磷脂過(guò)氧化,GO片層結(jié)構(gòu)對(duì)細(xì)菌膜的嵌入、包裹以及磷脂分子的提取,GO表面催化引發(fā)的活性自由基等。另外,GO的尺寸在上述不同的***機(jī)制中對(duì)***的影響也是不同的,機(jī)械破壞和磷脂分子抽提理論表明尺寸越大的GO,能表現(xiàn)出更好的***能力,而氧化應(yīng)激理論則認(rèn)為GO尺寸越小,其***效果越好。
比較成熟的非線性材料有半導(dǎo)體可飽和吸收鏡和碳納米管可飽和吸收體。但是制作半導(dǎo)體可飽和吸收鏡需要相對(duì)復(fù)雜和昂貴的超凈制造系統(tǒng),這類器件的典型恢復(fù)時(shí)間約為幾個(gè)納秒,且半導(dǎo)體可飽和吸收鏡的光損傷閥值很低,常用的半導(dǎo)體飽和吸收鏡吸收帶寬較窄。碳納米管是一種直接帶隙材料,帶隙大小由碳納米管直徑和屬性決定。不同直徑碳納米管的混合可實(shí)現(xiàn)寬的非線性吸收帶,覆蓋常用的1.0~1.6um激光増益發(fā)射波段。但是由于碳納米管的管狀形態(tài)會(huì)產(chǎn)生很大的散射損耗,提高了鎖模閥值,限制了激光輸出功率和效率,所以,研究人員一直在尋找一種具有高光損傷閩值、超快恢復(fù)時(shí)間、寬帶寬和價(jià)格便宜等優(yōu)點(diǎn)的飽和吸收材料。氧化石墨可以用于提高環(huán)氧樹(shù)脂、聚乙烯、聚酰胺等聚合物的導(dǎo)熱性能。
利用化學(xué)交聯(lián)和物理手段調(diào)控氧化石墨烯基膜片上的褶皺和片層間的距離是制備石墨烯基納濾膜的主要手段。由于氧化石墨烯片層間隙距離小,Jin等24利用真空過(guò)濾法在石墨烯片層間加入單壁碳納米管(SWCNT),氧化石墨烯片層間的距離明顯增加,水通量可達(dá)到6600-7200L/(m2.h.MPa),大約是傳統(tǒng)納濾膜水通量的100倍,對(duì)于染料的截留率達(dá)到97.4%-98.7%。Joshi等25研究了真空抽濾GO分散液制備微米級(jí)厚度層狀GO薄膜的滲透作用。通過(guò)一系列實(shí)驗(yàn)表明,GO膜在干燥狀態(tài)下是真空壓實(shí)的,但作為分子篩浸入水中后,能夠阻擋所有水合半徑大于0.45nm的離子,半徑小于0.45nm的離子滲透速率比自由擴(kuò)散高出數(shù)千倍,且這種行為是由納米毛細(xì)管網(wǎng)絡(luò)引起的。異常快速滲透歸因于毛細(xì)管樣高壓作用于石墨烯毛細(xì)管內(nèi)部的離子。GO薄膜的這一特性在膜分離領(lǐng)域具有非常重要的應(yīng)用價(jià)值。GO表面的各種官能團(tuán)使其可與生物分子直接相互作用,易于化學(xué)修飾。應(yīng)該怎么做氧化石墨導(dǎo)熱
石墨烯微片的缺陷有時(shí)使其無(wú)法滿足某些復(fù)合材料在抗靜電或?qū)щ?、隔熱或?qū)岬确矫娴奶厥庖?。官能化氧化石墨?dǎo)電
RGO制備簡(jiǎn)單、自身具有受還原程度調(diào)控的帶隙,可以實(shí)現(xiàn)超寬譜(從可見(jiàn)至太赫茲波段)探測(cè)。氧化石墨烯的還原程度對(duì)探測(cè)性能有***影響,隨著氧化石墨烯還原程度的提高,探測(cè)器的響應(yīng)率可以提高若干倍以上。因此,在CVD石墨烯方案的基礎(chǔ)上,研究者開(kāi)始嘗試使用還原氧化石墨烯制備類似結(jié)構(gòu)的光電探測(cè)器。對(duì)于RGO-Si器件,帶間光子躍遷以及界面處的表面電荷積累,是影響光響應(yīng)的重要因素[72]。2014年,Cao等[73]將氧化石墨烯分散液滴涂在硅線陣列上,而后通過(guò)熱處理對(duì)氧化石墨烯進(jìn)行熱還原,制得了硅納米線陣列(SiNW)-RGO異質(zhì)結(jié)的室溫超寬譜光探測(cè)器。該探測(cè)器在室溫下,***實(shí)現(xiàn)了從可見(jiàn)光(532nm)到太赫茲波(2.52THz,118.8mm)的超寬譜光探測(cè)。在所有波段中,探測(cè)器對(duì)10.6mm的長(zhǎng)波紅外具有比較高的光響應(yīng)率可達(dá)9mA/W。官能化氧化石墨導(dǎo)電