博厚新材料鎳基高溫合金粉末的表面質(zhì)量通過多道工藝精密控制,采用真空熱處理 + 表面鈍化復(fù)合工藝,使粉末表面粗糙度 Ra≤0.8μm,氧含量≤80ppm,且無吸附性雜質(zhì)。這種優(yōu)異的表面狀態(tài)提升了后續(xù)加工效率:在激光熔覆工藝中,粉末鋪粉均勻性誤差<0.03mm,激光吸收率提升至 45%,熔覆層表面無需打磨即可達(dá)到 Ra≤6.3μm 的精度,較傳統(tǒng)工藝減少 2 道后處理工序。某醫(yī)療器械企業(yè)使用該粉末 3D 打印骨科植入物時(shí),表面孔隙率控制在 30-40%,粗糙度 Ra≤1.6μm,不滿足 ISO 13485 認(rèn)證要求,還促進(jìn)了骨細(xì)胞的黏附與生長(zhǎng),術(shù)后患者恢復(fù)周期縮短 20%。對(duì)于裝備制造領(lǐng)域,博厚新材料鎳基高溫合金粉末是不可或缺的材料。渦輪盤鎳基高溫合金粉末對(duì)比價(jià)
在高溫耐磨的工業(yè)應(yīng)用場(chǎng)景中,博厚新材料鎳基高溫合金粉末以其硬質(zhì)相復(fù)合體系,構(gòu)建起長(zhǎng)效的耐磨防護(hù)屏障。通過在鎳基基體中均勻彌散 15-20% 的 WC(碳化鎢)與 Cr?C?(碳化鉻)硬質(zhì)相,利用粉末冶金工藝使硬質(zhì)相以納米級(jí)顆粒均勻分布,形成 “金屬基體 + 陶瓷強(qiáng)化相” 的復(fù)合結(jié)構(gòu),經(jīng)檢測(cè)涂層顯微硬度可達(dá) HV1000-1200,較傳統(tǒng)鎳基涂層提升 40% 以上。在水泥回轉(zhuǎn)窯托輪軸頸的修復(fù)應(yīng)用中,該粉末涂層展現(xiàn)出耐磨損能力。當(dāng)設(shè)備處于 300℃高溫與 20MPa 接觸應(yīng)力的工況時(shí),涂層的磨損量為 0.01mm/1000 小時(shí),而未處理的軸頸在相同條件下磨損量達(dá) 0.08mm/1000 小時(shí),耐磨性能提升 8 倍。微觀分析顯示,WC 顆粒在磨損過程中形成 “支撐骨架”,有效阻礙磨粒對(duì)基體的切削,而鎳基相則提供足夠的韌性以抵抗沖擊疲勞。某礦山破碎機(jī)錘頭采用該粉末堆焊后,使用壽命實(shí)現(xiàn)質(zhì)的飛躍。在處理花崗巖等硬巖物料時(shí),錘頭更換周期從 3 個(gè)月延長(zhǎng)至 10 個(gè)月,按年處理 100 萬噸礦石計(jì)算,每年可減少停機(jī)更換次數(shù)達(dá) 8 次,單次停機(jī)損失約 25 萬元,年綜合效益提升超 200 萬元。這種 “耐高溫 + 高耐磨” 的雙重性能優(yōu)勢(shì),使博厚粉末在水泥、礦山、冶金等高溫磨損領(lǐng)域成為設(shè)備延壽的解決方案。耐腐蝕鎳基高溫合金粉末怎么樣無論是在極端高溫還是復(fù)雜應(yīng)力環(huán)境下,博厚新材料鎳基高溫合金粉末都能展現(xiàn)出可靠性。
博厚新材料在鎳基高溫合金粉末領(lǐng)域的研發(fā)成果豐碩,為我國(guó)高溫合金材料的發(fā)展做出了積極而重要的貢獻(xiàn)。公司通過持續(xù)的技術(shù)創(chuàng)新和研發(fā)投入,突破了多項(xiàng)關(guān)鍵技術(shù),填補(bǔ)了國(guó)內(nèi)在某些鎳基高溫合金粉末產(chǎn)品上的空白。例如,成功開發(fā)出適用于航空發(fā)動(dòng)機(jī)渦輪葉片的新一代鎳基單晶高溫合金粉末,其性能達(dá)到國(guó)際先進(jìn)水平,打破了國(guó)外對(duì)該類材料的長(zhǎng)期壟斷,實(shí)現(xiàn)了國(guó)產(chǎn)化替代;在新能源領(lǐng)域,研發(fā)的高導(dǎo)熱、高穩(wěn)定性的鎳基高溫合金粉末,為太陽能光熱發(fā)電、核能等新能源裝備的關(guān)鍵部件制造提供了可靠的材料支持,推動(dòng)了我國(guó)新能源產(chǎn)業(yè)的發(fā)展。此外,博厚新材料還積極參與行業(yè)標(biāo)準(zhǔn)的制定和修訂工作,將自身的技術(shù)成果和實(shí)踐經(jīng)驗(yàn)轉(zhuǎn)化為行業(yè)標(biāo)準(zhǔn),提升了我國(guó)高溫合金材料行業(yè)的整體技術(shù)水平和國(guó)際競(jìng)爭(zhēng)力,為行業(yè)的健康、可持續(xù)發(fā)展發(fā)揮了重要的和示范作用。
在航空發(fā)動(dòng)機(jī)渦輪葉片制造中,博厚新材料鎳基高溫合金粉末發(fā)揮著關(guān)鍵作用。通過定向凝固技術(shù),使粉末制備的葉片形成柱狀晶組織,提高高溫蠕變性能。葉片表面采用該粉末進(jìn)行激光熔覆制備的熱障涂層,熱導(dǎo)率低至 1.2W/m?K,可降低基體溫度 150℃,有效延長(zhǎng)葉片使用壽命。某型號(hào)航空發(fā)動(dòng)機(jī)采用該粉末制造的渦輪葉片,經(jīng) 1000 小時(shí)臺(tái)架試車與 500 小時(shí)空中飛行驗(yàn)證,各項(xiàng)性能指標(biāo)穩(wěn)定,發(fā)動(dòng)機(jī)推力提升 3%,油耗降低 2%,為我國(guó)航空發(fā)動(dòng)機(jī)技術(shù)進(jìn)步做出重要貢獻(xiàn)。憑借優(yōu)良的性能,博厚新材料鎳基高溫合金粉末在國(guó)內(nèi)外市場(chǎng)上贏得了認(rèn)可和信賴。
采用博厚新材料鎳基高溫合金粉末制造的零部件,憑借其優(yōu)異的性能,能夠有效降低設(shè)備的維護(hù)成本和停機(jī)時(shí)間,為企業(yè)帶來的經(jīng)濟(jì)效益。在能源電力行業(yè),使用該粉末制造的燃?xì)廨啓C(jī)葉片,由于其良好的耐高溫、耐磨和抗腐蝕性能,減少了葉片表面的磨損和腐蝕程度,延長(zhǎng)了葉片的使用壽命,從而降低了葉片的更換頻率和維護(hù)成本。據(jù)統(tǒng)計(jì),某燃?xì)廨啓C(jī)發(fā)電廠采用博厚新材料鎳基高溫合金粉末葉片后,每年可減少葉片更換費(fèi)用 300 萬元,同時(shí)由于設(shè)備可靠性提高,停機(jī)檢修時(shí)間從每年 60 小時(shí)縮短至 20 小時(shí),多發(fā)電約 1000 萬度,增加經(jīng)濟(jì)效益 800 萬元。在冶金行業(yè),使用該粉末涂層修復(fù)的高爐風(fēng)口、渣口等部件,能夠有效抵御高溫鐵水和爐渣的侵蝕,延長(zhǎng)部件使用壽命 2 - 3 倍,減少了因部件損壞導(dǎo)致的高爐休風(fēng)次數(shù),提高了高爐的作業(yè)率,為企業(yè)創(chuàng)造了可觀的經(jīng)濟(jì)效益。在能源電力行業(yè),博厚新材料鎳基高溫合金粉末為高溫部件的制造提供了可靠的材料保障。100/270目鎳基高溫合金粉末包括哪些
博厚新材料鎳基高溫合金粉末的顯微組織均勻細(xì)致,進(jìn)一步增強(qiáng)了材料的性能優(yōu)勢(shì)。渦輪盤鎳基高溫合金粉末對(duì)比價(jià)
博厚新材料鎳基高溫合金粉末對(duì)激光熔覆、熱等靜壓等先進(jìn)制造工藝具有良好的適配性。在激光熔覆過程中,粉末的低熔點(diǎn)共晶成分(熔點(diǎn)降低至 1200℃)與高潤(rùn)濕性,使熔覆層與基體形成牢固的冶金結(jié)合(結(jié)合強(qiáng)度≥45MPa),且稀釋率控制在 5% 以內(nèi)。熱等靜壓工藝中,粉末的高球形度與低含氧量確保了部件的高致密度(≥99.5%),內(nèi)部缺陷完全消除。某航空發(fā)動(dòng)機(jī)葉片制造企業(yè)采用 “激光熔覆 + 熱等靜壓” 復(fù)合工藝,將葉片的生產(chǎn)周期縮短 30%,成本降低 25%,同時(shí)性能達(dá)到鍛造件水平。渦輪盤鎳基高溫合金粉末對(duì)比價(jià)